JISKa (Jurnal Informatika Sunan Kalijaga)
Vol. 10 No. 2 (2025): May 2025

Prediksi Kualitas Udara Menggunakan Metode CatBoost

Syukur, Mohamad Arif Abdul (Unknown)
Suhartono, Suhartono (Unknown)
Chamidy, Totok (Unknown)



Article Info

Publish Date
31 May 2025

Abstract

Air is essential for life, but industrial activities, forest fires, cigarette smoke, and transportation contribute to air pollution. AirVisual AQI 2024 data ranks Jakarta in 11th place globally, with the highest level of pollution, reaching 127, which is unhealthy for sensitive groups and poses a risk of causing serious illnesses, including skin and respiratory diseases. This research uses the CatBoost method to predict the air quality index using Jakarta SPKU data taken from Kaggle. The data is processed through pre-processing and divided into four models with different comparisons of training and testing data. Each model was tested with the parameters iteration, depth, learning rate, and l2_leaf_reg, using GridSearchCV to find the optimal combination. The results show that the model with 90% training data and 10% testing data provides the best accuracy of 97%, due to the larger proportion of training data. This research demonstrates that the CatBoost method can yield accurate air quality predictions, which is crucial in supporting efforts to mitigate the impact of pollution and enhance public health.

Copyrights © 2025






Journal Info

Abbrev

JISKA

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Library & Information Science

Description

JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, ...