Gabah kering panen (GKP) merupakan komoditas pertanian strategis yang berperan signifikan dalam mendukung ketahanan pangan nasional. Fluktuasi harga gabah yang tidak menentu menjadi tantangan serius bagi petani dalam menentukan harga jual hasil panen. Dalam penelitian ini, harga gabah kering panen diprediksi dengan menggunakan metode   Autoregressive Integrated Moving Average (ARIMA). Data yang digunakan diambil dari data bulanan yang dikumpulkan oleh Badan Pusat Statistik (BPS) dari januari 2010 hingga desember 2024. Proses penelitian meliputi tahap pengumpulan data, pengolahan data, uji stasioneritas menggunakan Augmented Dickey-Fuller (ADF), analisis Autocorrelation Function (ACF) dan Partial Autocorrelation Function (PACF), pemilihan parameter optimal (p, d, q) menggunakan pendekatan grid search, pembangunan model ARIMA, prediksi, dan mengevaluasi performa model. Hasil uji ADF menunjukkan bahwa data menjadi stasioner setelah differencing kedua. Berdasarkan hasil grid search dan nilai Akaike Information Criterion (AIC) yang paling rendah. Dengan nilai AIC, model yang paling cocok adalah ARIMA (1,2,2). Sebesar 2188,98. Evaluasi terhadap nilai Mean Absolute Percentage Error (MAPE) sebesar 8,90%, Root Mean Squared Error (RMSE) sebesar 636,97 dan Mean Squared Error (MSE) sebesar 405731,65. Dari hasil penelitian ini, dapat disimpulkan bahwa model ARIMA cukup andal dan akurat dalam memprediksi harga gabah kering panen.
                        
                        
                        
                        
                            
                                Copyrights © 2025