International Journal of Robotics and Control Systems
Vol 5, No 2 (2025)

Evaluating the Effectiveness of Alzheimer’s Detection Using GANs and Deep Convolutional Neural Networks (DCNNs)

Pamungkas, Yuri (Unknown)
Syaifudin, Achmad (Unknown)
Crisnapati, Padma Nyoman (Unknown)
Hashim, Uda (Unknown)



Article Info

Publish Date
03 May 2025

Abstract

Alzheimer’s is a gradually worsening condition that damages the brain, making timely and precise diagnosis essential for better patient care and outcomes. However, existing detection methods using DCNNs are often hampered by the problem of class imbalance in datasets, particularly OASIS and ADNI, where some classes are underrepresented. This study proposes a novel approach integrating GANs with DCNNs to tackle class imbalance by creating synthetic samples for underrepresented categories. The primary focus of this research is demonstrating that using GANs for data augmentation can significantly strengthen DCNNs performance in Alzheimer's detection by balancing the data distribution across all classes. The proposed method involves training DCNNs with both original and GAN-generated data, with data partitioning of 80:10:10 for training/ validation/ testing. GANs are applied to generate new samples for underrepresented classes within the OASIS and ADNI datasets, ensuring balanced datasets for model training. The experimental results show that using GANs improves classification performance significantly. In the case of the OASIS dataset, the mean accuracy and F1 Score rose from 99.64% and 95.07% (without GANs) to 99.98% and 99.96% (with GANs). For the ADNI dataset, the average accuracy and F1 Score improved from 96.21% and 93.01% to 99.51% and 99.03% after applying GANs. Compared to existing methods, the proposed GANs + DCNNs model achieves higher accuracy and robustness in detecting various stages of Alzheimer's disease, particularly for minority classes. These findings confirm the effectiveness of GANs in improving DCNNs' performance for Alzheimer's detection, providing a promising framework for future diagnostic implementations.

Copyrights © 2025






Journal Info

Abbrev

IJRCS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and ...