The vitamin C content in red chili peppers plays a crucial role in meeting nutritional needs, particularly in free nutritious lunch programs. Red chili peppers are one of the essential sources of vitamin C in daily consumption. However, vitamin C content in chilies can degrade due to storage and drying processes. This study develops a segmentation and classification method for vitamin C content in red chili pepper images using Linear Discriminant Analysis (LDA) as a faster and more efficient alternative to conventional laboratory methods. The dataset consists of 100 red chili images categorized into fresh and dried chilies. The analysis process includes preprocessing, feature extraction of color and texture (RGB, HSV, GLCM), dimensionality reduction, and classification using LDA. Experimental results show that this method achieves 99% accuracy on training data and 97% on test data, demonstrating that digital image processing can serve as a non-destructive approach for food quality estimation. This approach has the potential to be applied in food quality monitoring within the food industry and public nutrition programs.
Copyrights © 2025