MEANS (Media Informasi Analisa dan Sistem)
Volume 9 Nomor 2

Klasifikasi Gambar Aksara Jawa Menggunakan Optimalisasi Parameter SVM dengan Kernel Cosine

Priyambodo, Aji (Unknown)
Prihati , Prihati (Unknown)



Article Info

Publish Date
24 Dec 2024

Abstract

Pattern recognition of Javanese script (Hanacaraka) plays a vital role in cultural preservation through digital technology. This study aims to develop a classification model for Javanese script images using Support Vector Machine (SVM) with a Cosine similarity kernel, supported by parameter optimization to enhance accuracy. A dataset of 4,385 images underwent preprocessing and feature extraction using Histogram of Oriented Gradients (HOG). SVM parameter optimization via GridSearchCV resulted in a significant accuracy improvement. The proposed model achieved a 99.84% accuracy, outperforming previous methods such as CNN-SVM and DCNN. This study demonstrates the effectiveness of Cosine similarity in Javanese script recognition and contributes to the advancement of machine learning-based classification systems.

Copyrights © 2024






Journal Info

Abbrev

Jurnal_Means

Publisher

Subject

Computer Science & IT

Description

Jurnal MEANS berdiri sejak Tahun 2016 dengan SK dari LIPI yaitu p-ISSN : 2548-6985 (Print) dan e-ISSN : 2599-3089 (Online) Terbit dua kali setiap Tahunnya yaitu Periode I Bulan Juni dan Periode II Bulan Desember Hasil Plagirisme Maksimal 25%, Lebih dari 25% Artikel Tidak Bisa Publish. Ruang lingkup ...