Journal of Applied Data Sciences
Vol 6, No 3: September 2025

Factor Analysis on Teaching Quality Management for Art Design Students Using Data Driven Approach

Junru, Chen (Unknown)
Sangsawang, Thosporn (Unknown)
Pigultong, Metee (Unknown)
Watkraw, Wasan (Unknown)



Article Info

Publish Date
12 Jul 2025

Abstract

This study aimed to improve teaching quality management for Art Design students using a data-driven approach through three objectives: (1) synthesizing key factors influencing instructional quality, (2) analyzing those factors using expert consensus, and (3) evaluating student satisfaction after applying the data-driven methodology. The Delphi Method was used to gather insights from 17 education experts, while 30 purposively selected Art Design students participated in satisfaction assessments. Data collection involved questionnaires and interviews, with analysis techniques including mean, standard deviation, Coefficient of Variation (CV), and t-tests. Cronbach’s α was 0.98, indicating high internal reliability. Results showed expert consensus on relevant teaching quality factors (M = 3.92, SD = 0.33, CV = 19.96, p = .002). Key aspects identified included instructional design, digital integration, feedback mechanisms, and curriculum alignment. Post-intervention analysis revealed significant student improvement, with average skill levels increasing from 16.12 (SD = 0.89) to 20.34 (SD = 0.566, p = .002). Student satisfaction reached 78.59%, with a mean of 3.90 (SD = 0.72, CV = 18.78). All statistical terms were properly defined and contextualized. The findings underscore the role of structured data analysis and expert-informed models in enhancing instructional strategies, aligning teaching with professional expectations, and promoting continuous improvement in Art and Design education.

Copyrights © 2025






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...