In today’s era of globalization, rapid technological advancements are driving innovation across various sectors, including the banking industry. One of the key digital innovations in banking is mobile banking (m-banking), which allows customers to perform transactions via smartphones. This study aims to analyze the sentiment of user reviews on the MyBCA application using three classification methods: Naive Bayes, Random Forest, and Decision Tree. A total of 5,000 user reviews were collected from the Google Play Store through web scraping techniques. The data was preprocessed using the TF-IDF weighting method and processed with Python programming language and the Scikit-Learn library. The dataset was split into 90% training data and 10% testing data. This study also applies the ISO 9126 standard for multi-label classification to assess software quality based on Usability, Efficiency, Functionality, Reliability, and Maintainability. Evaluation results indicate that Random Forest achieved the highest accuracy at 94.09%, outperforming Naive Bayes (81.77%) and Decision Tree (82.38%). This research contributes to the development of a sentiment-based evaluation method for mobile banking applications, integrating user feedback analysis with ISO 9126 quality standards, and offers a useful reference for improving digital banking services.
                        
                        
                        
                        
                            
                                Copyrights © 2025