This study addresses the challenge of generating high-quality synthetic financial time series data, acritical issue in financial forecasting due to limited access to complete and reliable historical datasets.The aim of this research was to compare the performance of the standard Variational Autoencoder andthe Vector Quantized Variational Autoencoder (VQ-VAE) in generating synthetic multivariate time seriesdata using the Adaro Energy Indonesia stock dataset. The VQ-VAE incorporates a discrete latentspace to improve the structure and control of the data generation process, whereas the standard VAEutilizes a continuous latent space. This research method was based on the implementation of bothmodels, followed by a quantitative evaluation using statistical metrics, including mean absolute error(MAE), mean squared error (MSE), root mean squared error (RMSE), and R² score. This researchshowed that the VQ-VAE outperformed the standard VAE in replicating the statistical characteristicsof stock prices, as shown by lower error values and higher R² scores across all tested features. The discretelatent space of the VQ-VAE led to the generation of more structured and statistically consistentsynthetic data. The implications of these findings suggest that the VQ-VAE model is highly suitablefor financial forecasting applications and indicate the potential for future enhancements throughintegration with hybrid models, such as attention mechanisms or generative adversarial networks.
Copyrights © 2025