JSAI (Journal Scientific and Applied Informatics)
Vol 8 No 2 (2025): Juni

Klasifikasi Teks Umpan Balik Kompetensi Kepribadian di Perguruan Tinggi Menggunakan Ekstraksi Fitur TF-IDF dan Algoritma Logistic Regression

Ayumi, Vina (Unknown)
Purba, Mariana (Unknown)
Mailana, Siska (Unknown)



Article Info

Publish Date
30 Jun 2025

Abstract

This study aimed to develop and evaluate a text classification model to identify sentiment in feedback on lecturers’ personality competencies at a university using TF-IDF feature extraction and Logistic Regression (LR) algorithms. The data originated from student evaluations of lecturers’ personality competencies at Universitas Sjakhyakirti, consisting of a total of 6,112 texts labeled as positive sentiment (3,700) and negative sentiment (2,412). The dataset was then divided into three parts: training (70%), validation (10%), and testing (20%). The research stages included text preprocessing, which involved data cleaning, letter normalization, and the removal of common words, followed by term weighting using the TF-IDF method and classification using the LR model to categorize texts as positive or negative sentiment. The model was evaluated using accuracy, precision, recall metrics, and a confusion matrix. Experimental results showed that at the 50th epoch, the model achieved a training accuracy of 81.90% and a validation accuracy of 78.30%, while on the testing data, the TF-IDF-LR model reached an accuracy of 75.1%.

Copyrights © 2025






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...