JSAI (Journal Scientific and Applied Informatics)
Vol 8 No 2 (2025): Juni

Implementasi Dataset Augmentation pada Citra Etnofimedisin Menggunakan Teknik Rotation dan Channel Shift

Purba, Mariana (Unknown)
Ayumi, Vina (Unknown)
Haji, Wachyu Hari (Unknown)



Article Info

Publish Date
30 Jun 2025

Abstract

This study aimed to increase the quantity and variety of ethnopharmacological image datasets using image augmentation techniques, specifically rotation range augmentation (RRA) and channel shift range augmentation (CSA). The dataset augmentation was conducted to enrich the training data for the development of machine learning models used to recognize medicinal plant images. The RRA technique rotated images by random angles, providing variations in object orientation, while CSA altered the color channel values to simulate changes in lighting and the natural colors of plants. The research process included dataset collection, data preprocessing, application of both augmentation techniques, and division of the dataset into training, validation, and testing data. The results showed that the CSA technique produced 2,400 training data, 300 validation data, and 300 testing data, while the RRA technique produced the same amount of data. Therefore, the total data generated from both augmentation techniques amounted to 6,000 images, which could improve the accuracy and performance of deep learning models in recognizing ethnopharmacological images.

Copyrights © 2025






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...