: EEG-based stress detection is crucial for early mental health monitoring, but signal quality is often degraded by artifacts and baseline variability. This study proposes an optimized preprocessing method combining Independent Component Analysis (ICA) for artifact removal and Relative Difference for baseline reduction. Using the SAM-40 EEG dataset, features were extracted with Differential Entropy and structured into a 3D EEG cube to preserve spatial-frequency information. A Convolutional Neural Network (CNN) classified stress levels into low and high categories. The proposed approach achieved 94.44% accuracy, with 100% precision for the high stress class and 81.82% recall. These results highlight the effectiveness of combining ICA and baseline reduction to enhance deep learning-based EEG signal processing for stress detection.
Copyrights © 2025