International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 14, No 3: December 2025

The bootstrap procedure for selecting the number of principal components in PCA

Toleva, Borislava (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

The initial step in determining the number of principal components for both classification and regression involves evaluating how much each component contributes to the total variance in the data. Based on this analysis, a subset of components that explains the highest percentage of variance is typically selected. However, multiple valid combinations may exist, and the final choice is often made manually by the researcher. This study introduces a novel yet straightforward algorithm for the automatic selection of the number of principal components. By integrating ANOVA and bootstrapping with principal component analysis (PCA), the proposed method enables automatic component selection in classification tasks. The algorithm is evaluated using three publicly available datasets and applied with both decision tree and support vector machine (SVM) classifiers. Results indicate that this automated procedure not only eliminates researcher bias in selecting components but also improves classification accuracy. Unlike traditional methods, it selects a single optimal combination of principal components without manual intervention, offering a new and efficient approach to PCAbased model development.

Copyrights © 2025






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...