In Morocco’s rapidly transforming educational landscape, this study delves into students’ adaptability to online learning environments by integrating sophisticated artificial intelligence (AI) algorithms and hyperparameter optimization techniques. This research uses the comprehensive “online learning adaptivity” dataset to identify pivotal factors influencing student flexibility and effectiveness in e-learning platforms. We applied various AI models, with a particular emphasis on the CatBoost classifier, which exhibited exceptional predictive performance, achieving an accuracy rate near 98%. This high precision in predicting student adaptiveness offers essential insights into tailoring digital education systems. The results underscore the significant potential of machine learning technologies to enhance educational methodologies by catering to the diverse needs of students. Such capabilities are instrumental for educators and policymakers dedicated to refining e-learning strategies that effectively accommodate individual learning styles, ultimately improving the broader educational outcomes in Moroccan tertiary education. These findings advocate for a more nuanced understanding of the interplay between student behavior and technological solutions, providing a roadmap for developing more responsive and effective educational platforms.
Copyrights © 2025