The topological advancements in twin rotor axial flux induction motors (TRAxFIMs) have spurred the interest in performance optimization and control strategies for electric vehicle (EV) applications in particular. This paper investigates for the enhanced performance of multi-level inverters (MLIs) fed TRAxFIMs with different advanced control techniques. The performance evaluation is done under variable speed conditions at constant torque and vice versa. The TRAxFIMs offer unique advantages like high power density, high efficiency and most suitable for EV applications. The performance analysis of MLIs fed TRAxFIM has been carried out with proportional-integral (PI), fuzzy controllers, and artificial neural network (ANN) controllers. The PI controller provides a conventional control approach, while the fuzzy and ANN controllers serve as advanced control strategies. The integration of MLIs and advanced control techniques with TRAxFIMs aims to enhance dynamic response, stability and efficiency. The proposed control strategies are evaluated through extensive MATLAB simulations and the potential of MLIs fed TRAxFIMs is emphasized for EV applications.
Copyrights © 2025