The conventional recording of sales transaction data frequently results in inaccuracies and presents significant obstacles to comprehensive data analysis. This study was conducted at Primkop Pullahta Hankam Pusdatin Kemhan RI with the aim of generating a product list based on item categories that are most frequently purchased together. These item combinations are expected to assist the cooperative in optimizing sales performance. The research employed a data mining technique known as association rule mining, which is designed to identify and predict customer purchasing behavior through analysis of transaction patterns. The dataset used comprised sales transaction records collected between September and November 2024. The FP-Growth algorithm was selected for its efficiency in identifying frequent itemsets without candidate generation. This algorithm utilized minimum support and confidence thresholds to generate association rules. The modeling process produced five association rules, each meeting the criteria of a minimum support of 20% and a minimum confidence of 80%, indicating strong co-occurrence among specific product combinations. Functional testing using the blackbox method demonstrated that all implemented features performed in accordance with specified functional requirements. The findings offer valuable insights for cooperative management by enabling data-driven decision-making in inventory planning, promotional bundling, and strategic sales targeting. These implications underscore the practical contribution of the research in enhancing operational efficiency and sales strategy within the cooperative sector.
                        
                        
                        
                        
                            
                                Copyrights © 2025