The increasing number of hypertension patients and the threat of serious complications make hypertension one of the leading causes of death worldwide. Early prevention is currently considered one of the best solutions. Early prevention through early detection can be achieved by utilizing machine learning technology. XGBoost is a machine learning algorithm based on gradient boosting machines. XGBoost applies regularization techniques to reduce overfitting and has faster execution speed as well as better performance. The objective of this research is to classify hypertension levels using the XGBoost method and leveraging hyperparameter tuning for optimization. In this study, the hyperparameter optimization technique used is gridsearchCV. The evaluation results of the XGBoost classification method using the best combination of parameters show good performance, where the XGBoost model achieves an accuracy of 93.3%, Precision of 97%, Recall of 92%, F1-Score of 93%, and AUC value of 0.935. This implies that the classification of hypertension levels in patients at Pelamonia Makassar Hospital can be well or accurately classified using the XGBoost method.
                        
                        
                        
                        
                            
                                Copyrights © 2025