Bulletin of Electrical Engineering and Informatics
Vol 14, No 4: August 2025

Anomaly detection in quadcopter flight: harnessing frequency domain analysis and barnacle mating optimization

Sharif Zakaria, Mohd (Unknown)
Fadhil Abas, Mohammad (Unknown)
Mohd Saad, Norhafidzah (Unknown)
Herwan Sulaiman, Mohd (Unknown)
Pebrianti, Dwi (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

Ensuring the safety and efficiency of unmanned aerial vehicles (UAVs) requires effective fault detection and identification (FDI). Traditional multi-stage FDI methods, particularly those using residual detection layers, increase complexity and computational cost, limiting real-time applications. This study proposes a single-stage anomaly detection framework integrating barnacle mating optimization (BMO) with discrete cosine transform (DCT) for UAV fault detection. While prior research explored model-based and data-driven FDI, bio-inspired optimization techniques remain underexplored in frequency-domain analysis. This study develops a BMO-based fitness function analyzing 3rd, 5th, and 7th harmonic peaks to detect UAV anomalies. Software-in-the-Loop (SITL) simulations validate the method, achieving a 5-second optimal frame size, mean absolute percentage error (MAPE) of 0.05, and root mean square error (RMSE) of 195.52. The findings confirm that a single-stage detection framework via optimization method and frequency domain analysis is possible, making it viable for real-time UAV applications. This study bridges the gap in bio-inspired UAV fault detection, paving the way for safer and more efficient UAV operations.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...