Abstrak — Terciptanya internet, jejaring sosial, forum, danteknologi informasi yang tersebar secara cepat, menyebabkaninteraksi terhadap informasi semakin sulit untuk dipahami,dibuat, dikembangkan, dan disimpan. Dengan luasnyainformasi sehingga hampir tidak mungkin untuk seorang pununtuk memproses dan meringkas semua data informasi yangtersedia. Indonesia memiliki literasi yang sangat rendah darinegara lain dengan beberapa faktor seperti tidak membiasakandiri untuk membaca buku dari rumah, perkembanganteknologi yang semakin pesat, minimnya sarana untukmembaca, kurangnya motivasi untuk membaca, dan sifat malasuntuk mengembangkan ide. Automatic text summarizationadalah salah satu alternatif teknologi yang bisa digunakanuntuk menyelesaikan masalah tersebut. Automatic textsummarization merupakan bagian dari bidang NaturalLanguage Processing (NLP) yang bertujuan untukmerepresentasikan dokumen teks yang panjang menjadi lebihringkas, sehingga pengguna dapat dengan mudah memahamiinformasi dengan cepat. Berbagai metode telah dilakukanuntuk mengatasi masalah peringkasan teks otomatis untukobjek berbahasa Indonesia, yaitu berbasis extractive danabstractive. Untuk mengatasi masalah ini, pada penelitiandigunakan extractive text summarization berbasis machinelearning. Pada penelitian ini menggunakan dataset publik yangbisa digunakan untuk penelitian-penelitian selanjutnya. Metodeyang digunakan untuk mendapatkan hasil summarizationdengan menggunakan metode Word2Vec dengan penerapanmodel Continous Bag-of-Word (CBOW) dan Skip-Gram. Metodeyang digunakan untuk evaluasi akurasi hasil ringkasan adalahRecall-Oriented Understudy for Gisting Evaluation (ROUGE). Kata kunci— Automatic Text Summarization, Word2Vec,Continous Bag-of-Words, Skip-Gram, Recall-OrientedUnderstudy for Gisting Evaluation
                        
                        
                        
                        
                            
                                Copyrights © 2024