Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer
Vol. 5 No. 2 (2025): Juli : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

Klasifikasi Jenis Bunga Iris Menggunakan Algoritma Klasifikasi Tradisional

Alwi Syahputra (Unknown)
Rusma Riansyah (Unknown)
Dimas Aqila Aptanta (Unknown)
Muhammad Farhan (Unknown)
Mhd. Furqan (Unknown)



Article Info

Publish Date
19 Jun 2025

Abstract

This study aims to implement and compare the performance of two traditional classification algorithms, namely K-Nearest Neighbor (K-NN) and Naive Bayes to classify Iris flower types. The dataset used is the Iris Dataset which is a classic dataset in machine learning consisting of 150 samples with four features (sepal length, sepal width, petal length, and petal width) and three target classes (Iris Setosa, Iris Versicolor, and Iris Virginica). The research methodology includes data preprocessing, algorithm implementation, model evaluation using accuracy, precision, recall, and F1-score metrics, and comparative performance analysis. The results showed that the K-NN algorithm with k = 3 achieved an accuracy of 96.67%, while Naive Bayes achieved an accuracy of 93.33%. Both algorithms showed good performance in classifying Iris flower types, with K-NN slightly superior in terms of accuracy. This study proves that traditional classification algorithms are still relevant and effective for classification problems with less complex datasets.

Copyrights © 2025






Journal Info

Abbrev

juisik

Publisher

Subject

Industrial & Manufacturing Engineering

Description

Jurnal ilmiah Sistem Informasi dan Ilmu Komputer p-ISSN: 2827-8135 e-ISSN : 2827-7953 merupakan Jurnal yang diterbitkan oleh Barenlitbangda Kabupaten Semarang. Jurnal ini adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil penelitian mengenai bidang Ilmu Sistem Informasi dan Ilmu ...