Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer
Vol. 5 No. 2 (2025): Juli : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

Hybrid Fuzzy Logic, Genetic Algorithms, and Artificial Neural Networks for Cattle Body Weight Prediction

Anjar Setiawan (Unknown)
Ema Utami (Unknown)
Dhani Ariatmanto (Unknown)



Article Info

Publish Date
01 Jul 2025

Abstract

Cattle serve as the primary means of meat and milk production in numerous regions across the globe. Enhancing efficiency and productivity in cow ranching can provide significant economic consequences. The cattle industry is significant as it enables the estimation of cow weight, directly influencing beef and milk quality. This study aims to enhance the accuracy of cattle weight estimation by minimizing the Mean Squared Error (MSE) values. The integration of artificial neural network (ANN), fuzzy logic (FL), and genetic algorithm (GA) techniques is a promising artificial intelligence tool for predicting and modeling cattle weight in livestock weight prediction systems. The cow weight forecast yielded a Mean Squared Error (MSE) value of 10.9 kg, which is the best result. The results demonstrate the progress made in agriculture using advanced technologies. They offer a detailed examination of how artificial intelligence, fuzzy logic, and evolutionary techniques can be combined to address the many difficulties associated with estimating cattle body weight.

Copyrights © 2025






Journal Info

Abbrev

juisik

Publisher

Subject

Industrial & Manufacturing Engineering

Description

Jurnal ilmiah Sistem Informasi dan Ilmu Komputer p-ISSN: 2827-8135 e-ISSN : 2827-7953 merupakan Jurnal yang diterbitkan oleh Barenlitbangda Kabupaten Semarang. Jurnal ini adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil penelitian mengenai bidang Ilmu Sistem Informasi dan Ilmu ...