Infotech: Journal of Technology Information
Vol 11, No 1 (2025): JUNI

ANALISIS PREDIKSI TUMBUH KEMBANG ANAK DENGAN MACHINE LEARNING

Nugraheni, Murien (Unknown)
Widodo, Widodo (Unknown)
Lestari, Uning (Unknown)
Effendy, Vina Ardelia (Unknown)
Yunanto, Prasetyo Wibowo (Unknown)
Amannu, Ramadhan (Unknown)



Article Info

Publish Date
24 Jun 2025

Abstract

Stunting is a major chronic nutritional issue that remains a significant challenge in Indonesia. This study aims to predict the risk of stunting in children and enhance prevention efforts by analyzing the health and nutritional status of parents. The research employs Machine Learning methods by comparing the performance of the Decision Tree and Gaussian Naive Bayes algorithms. The dataset was obtained from open data sources and analyzed using Google Colab, with a Technology Readiness Level (TRL) of level 3. Evaluation results show that both algorithms achieved an accuracy of 95.35% based on the confusion matrix. The model accurately identified 2 stunting cases (True Positive) and 41 non-stunting cases (True Negative), indicating a high level of classification reliability. These findings suggest that Machine Learning approaches can be effectively utilized as early detection tools to support stunting prevention strategies in children.

Copyrights © 2025






Journal Info

Abbrev

infoteh

Publisher

Subject

Computer Science & IT

Description

Jurnal Infotech adalah jurnal ilmiah yang berisi hasil penelitian yang ditulis oleh dosen, peneliti dan praktisi. Jurnal ini diharapkan untuk mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian di bidang Teknologi Informasi dan Ilmu Komputer. ...