Infotech: Journal of Technology Information
Vol 11, No 1 (2025): JUNI

STUDI PERBANDINGAN KEAKURATAN MODEL GLM DAN SVM DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI INDONESIA

Nindito, Hendro (Unknown)
Imanuel, Marchelle (Unknown)
Calvin, Calvin (Unknown)
Lukman, Michelle Pandojo (Unknown)



Article Info

Publish Date
24 Jun 2025

Abstract

Unemployment is one of the major issues faced by Indonesia. As of February 2024, the open unemployment rate in Indonesia reached 4.82% of the total labor force. The decline in labor force participation rates and the Human Development Index (HDI) in provinces with high open unemployment rates indicates a correlation as a key contributing factor to unemployment.  This study aims to predict the open unemployment rate in regions of Indonesia using the Generalized Linear Model and Support Vector Machine algorithms through Oracle Machine Learning, and to compare the accuracy of both models in predicting regional unemployment levels in Indonesia. The CRISP-DM framework was applied to support a structured analytical process.  The results of the study show that the Generalized Linear Model developed to predict the open unemployment rate in Indonesia achieved a Mean Absolute Error (MAE) of 0.156 and a Root Mean Square Error (RMSE) of 0.246. In comparison, the Support Vector Machine model yielded a lower MAE of 0.014 and an RMSE of 0.097.

Copyrights © 2025






Journal Info

Abbrev

infoteh

Publisher

Subject

Computer Science & IT

Description

Jurnal Infotech adalah jurnal ilmiah yang berisi hasil penelitian yang ditulis oleh dosen, peneliti dan praktisi. Jurnal ini diharapkan untuk mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian di bidang Teknologi Informasi dan Ilmu Komputer. ...