IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 4: August 2025

Hybrid forecasting methods across varied domains-a systematic review

Xhabafti, Malvina (Unknown)
Sinaj, Valentina (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

Time series forecasting is one of the links that has developed since early times due to risk management, efficient allocation of resources, performance evaluation, strategic planning, and the formulation of effective policies for individuals, organizations, and societies. Forecasting models have evolved steadily by hybridizing statistical and neural network techniques ensuring efficiency and accurate predictions. In this paper, a systematic review of the literature was made through the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology, highlighting the domains that mostly use hybrid techniques by defining the ones with the highest frequency of implementation in each domain we predefined. During the selection process from the 4 selected databases, 2251 works were taken into consideration, of which 25 were the ones that were included in the review process through various filtering steps and exclusion criteria. Ongoing, we defined four main categories where we presented each paper individually by briefly explaining the underlying data, the proposed hybrid forecasting approach and the evaluation performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). In a summary table, we highlight the most used hybrid methods for each domain, concluding which of the statistical and deep learning methods are mostly applied in the specified domains.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...