IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 4: August 2025

A reinforcement learning paradigm for Vietnamese aspect-based sentiment analysis

Bui, Viet The (Unknown)
Ngo, Linh Thuy (Unknown)
Tran, Oanh Thi (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

This paper presents the task of aspect-based sentiment analysis (ABSA) that recognizes the sentiment polarity associated with each aspect of entities discussed in customers’ reviews, focusing on a low-resourced language, Vietnamese. Unlike conventional classification approaches, we leverage reinforcement learning (RL) techniques by formulating the task as a Markov decision process. This approach allows an RL agent to handle the hierarchical nature of ABSA, sequentially predicting entities, aspects, and sentiments by exploiting review features and previously predicted labels. The agent seeks to discover optimal policies by maximizing cumulative long-term rewards through accurate entity, aspect, and sentiment predictions. The experimental results on public Vietnamese datasets showed that the proposed approach yielded new state of the art (SOTA) results in both hotel and restaurant domains. Using the best model, we achieved an improvement of 1% to 3% in the F1 scores for detecting aspects and the corresponding sentiment polarity.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...