IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 4: August 2025

Non-small cell lung cancer active compounds discovery holding on protein expression using machine learning models

Hanafi, Hamza (Unknown)
Aït Kbir, M’hamed (Unknown)
Rossi Hassani, Badr Dine (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

Computational methods have transformed the field of drug discovery, which significantly helped in the development of new treatments. Nowadays, researchers are exploring a wide ranger of opportunities to identify new compounds using machine learning. We conducted a comparative study between multiple models capable of predicting compounds to target non-small cell lung cancer, we focused on integrating protein expressions to identify potential compounds that exhibit a high efficacy in targeting lung cancer cells. A dataset was constructed based on the trials available in the ChEMBL database. Then, molecular descriptors were calculated to extract structure-activity relationships from the selected compounds and feed into several machine learning models to learn from. We compared the performance of various algorithms. The multilayer perceptron model exhibited the highest F1 score, achieving an outstanding value of 0,861. Moreover, we present a list of 10 drugs predicted as active in lung cancer, all of which are supported by relevant scientific evidence in the medical literature. Our study showcases the potential of combining protein expression analysis and machine learning techniques to identify novel drugs. Our analytical approach contributes to the drug discovery pipeline, and opens new opportunities to explore and identify new targeted therapies.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...