Journal of Telematics and Informatics
Vol 5, No 1: March 2017

Student Academic Performance Prediction on Problem Based Learning Using Support Vector Machine and K-Nearest Neighbor

Badieah Assegaf (Informatics Engineering Department, Universitas Islam Sultan Agung, Semarang)



Article Info

Publish Date
21 Sep 2017

Abstract

Academic evaluation is an important process to know how well the learning process was conducted and also one of the decisive factors that can determine the quality of the higher education institution. Though it usually curative, the preventive effort is needed by predicting the performance of the student before the semester begin. This effort aimed to reduce the failure rate of the students in certain subjects and make it easier for the PBL tutor to create appropiate learning strategies before the tutorial class begin. The purpose of this work is to find the best data mining technique to predict student academic performance on PBL system between two data mining classification algorithms. This work applied and compared the performance of the classifier models built from Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). After preprocessed the dataset, the classifier models were developed and validated. The result shows that both algorithms were giving good accuracy by 97% and 95,52% respectively though SVM showing the best performance compared to KNN in F-Measure with 80%. The further deployment is needed to integrate the model with academic information system, so that academic evaluation can be easily done.

Copyrights © 2017






Journal Info

Abbrev

JTI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Journal of Telematics and Informatics (e-ISSN: 2303-3703, p-ISSN: 2303-3711) is an interdisciplinary journal of original research and writing in the wide areas of telematics and informatics. The journal encompasses a variety of topics, including but not limited to: The technology of sending, ...