Manajemen stok yang tidak tepat dapat berdampak negatif terhadap efisiensi dan keuntungan bisnis ritel. Toko Monisa menghadapi permasalahan dalam menentukan produk yang perlu diprioritaskan dalam penyediaan stok. Tujuan dari penelitian ini adalah untuk mengelompokkan produk berdasarkan performa penjualan guna membantu pengambilan keputusan dalam pengelolaan stok. Metode yang digunakan adalah algoritma K-Means Clustering dengan pendekatan Knowledge Discovery in Databases (KDD) yang meliputi seleksi data, pembersihan data, transformasi, proses clustering, dan evaluasi hasil. Data yang dianalisis terdiri dari 18.344 transaksi penjualan sepanjang tahun 2024. Jumlah klaster optimal ditentukan menggunakan Elbow Method, menghasilkan tiga klaster, dan validitas klaster diuji menggunakan Silhouette Score yang menunjukkan nilai 0,79. Hasil klasterisasi menunjukkan bahwa produk dapat dikategorikan menjadi tiga kelompok: penjualan rendah, sedang, dan tinggi. Temuan ini memberikan dasar bagi pengambilan keputusan dalam perencanaan stok, strategi promosi, dan efisiensi pengelolaan produk. Simpulan dari penelitian ini menunjukkan bahwa algoritma K-Means mampu memberikan solusi efektif berbasis data historis dalam mendukung efisiensi operasional toko ritel.
Copyrights © 2025