Jurnal Informatika
Vol 12, No 2 (2025): October

Batik Pattern Classification Using Logistic Regression, SVM, and Deep Learning Features

Hapsari, Ratih Addina (Unknown)
Yuadi, Imam (Unknown)



Article Info

Publish Date
28 Aug 2025

Abstract

This study presents the integration of deep learning-based feature extraction with conventional machine learning classifiers for automatically categorizing Indonesian batik patterns. The research utilizes five traditional motifs: Alas Alasan, Kokrosono, Semen Sawat Gurdha, Sido Asih, and Sido Mulyo. Feature extraction was conducted using three deep learning models: Inception V3, VGG16, and VGG19, followed by classification through Logistic Regression and Support Vector Machines (SVM), with data processing performed in Orange. Experimental results show that Inception V3 combined with Logistic Regression achieved the highest classification performance, reaching 99.2% classification accuracy and an F1-score of 0.992. These results confirm the effectiveness of deep feature embeddings in improving the automatic classification of batik motifs. The study contributes to developing intelligent classification frameworks, offering a scalable approach to cultural heritage preservation through technology. Future work will focus on enhancing feature extraction methods and expanding the dataset to address motif overlap challenges.

Copyrights © 2025






Journal Info

Abbrev

ji

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika respects all researchers Technology and Information field as a part spirit of disseminating science resulting and community service that provides download journal articles for free, both nationally and internationally. The editorial welcomes innovative manuscripts from Technology ...