TECHNOVATAR
Vol. 2 No. 4 (2024): OKTOBER

IMPLEMENTASI SVM-PSO DALAM ANALISIS SENTIMEN PENGGUNA GOOGLE PLACE REVIEW DI MARKAS CAFE

Rosmawan, Hendri (Unknown)
Setyanto, Setyanto (Unknown)
Wibowo, Ferry Wahyu (Unknown)



Article Info

Publish Date
14 Sep 2024

Abstract

Sentiment analysis plays an important role in understanding customer perceptions of businesses, allowing companies to respond more effectively to customer needs and satisfaction. This study aims to evaluate the performance of a Support Vector Machine (SVM) model optimized with Particle Swarm Optimization (PSO) in classifying the sentiment of user reviews on Markas Cafe. The dataset consists of 1,533 user reviews categorized into three sentiment classes: positive, neutral, and negative. The optimization process using PSO is used to find the optimal SVM parameters. The results showed that the SVM-PSO model achieved an accuracy of 87.7% and an Area Under Curve (AUC) of 0.85, with the best performance on positive sentiment (94.7% precision and 92.8% recall). Although the model showed good ability in detecting positive sentiments, the results for neutral and negative sentiments indicated the need for further improvement. This study confirms the effectiveness of SVM-PSO in sentiment analysis and suggests this approach can be utilized by businesses to improve marketing and customer service strategies based on user feedback.

Copyrights © 2024






Journal Info

Abbrev

technovatar

Publisher

Subject

Computer Science & IT Control & Systems Engineering Engineering Industrial & Manufacturing Engineering Mathematics

Description

TECHNOVATAR Jurnal Teknologi, Industri, dan Informasi adalah sebuah jurnal ilmiah yang diterbitkan oleh Awatara Publisher dengan fokus utama pada pengkajian mendalam tentang perkembangan teknologi, industri, dan informasi dalam dunia digital. Jurnal ini menyajikan informasi dan pengetahuan terkini ...