Glaukoma merupakan penyakit mata serius yang dapat menyebabkan kebutaan permanen. Salah satu indikator penting dalam diagnosis glaukoma adalah nilai Cup to Disc Ratio (CDR), yang diperoleh dari segmentasi area optic disc (OD) dan optic cup (OC) pada citra fundus retina. Penelitian ini mengembangkan model segmentasi berbasis U-Net dengan backbone ResNet50 untuk mendeteksi area OD dan OC secara otomatis. Data yang digunakan adalah dataset REFUGE sebanyak 1200 citra fundus dan mask ground truth. Sebelum pelatihan, dilakukan tahap pra-pemrosesan yang mencakup ekstraksi ROI optic disc menggunakan metode Normalized Cross-Correlation (NCC) dan peningkatan kontras dengan CLAHE.Model dievaluasi menggunakan metrik Dice Coefficient dan Intersection over Union (IoU) untuk mengukur akurasi segmentasi. Hasil segmentasi menunjukkan bahwa model menghasilkan nilai Dice Coefficient sebesar 0,9175 dan IoU sebesar 0,8976 untuk segmentasi optic disc, serta Dice sebesar 0,8924 dan IoU sebesar 0,8057 untuk segmentasi optic cup. Guna memperhalus bentuk kontur, diterapkan metode ellipse fitting pada hasil segmentasi sebelum perhitungan CDR. Nilai CDR yang diperoleh kemudian digunakan untuk mengklasifikasikan tingkat keparahan glaukoma.
Copyrights © 2025