Jurnal Buana Informatika
Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025

Implementasi Algoritma Apriori sebagai Association Rule Learning untuk Mengidentifikasi Pola Item Dataset Penjualan

Supriana, I Wayan (Unknown)
Rahning Putri, Luh Arida Ayu (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

Persaingan toko retail semakin ketat, pemasaran dan penataan produk penting untuk efisiensi belanja, menjaga kenyamanan, dan meningkatkan profit. Analisis kebiasaan berbelanja konsumen terhadap barang pada setiap transaksi dengan melakukan market basket analysis. Algoritma Apriori merupakan salah satu teknik untuk menemukan frequent item dalam membangun association rule yaitu hubungan antara kombinasi item dalam suatu dataset. Penelitian ini bertujuan untuk implementasi algoritma Apriori sebagai association rule learning untuk mengidentifikasi pola item dataset penjualan pada toko retail. Association rule itemset dengan algoritma Apriori akan dibandingkan dengan Frequent Pattern Growth (FP-Growth) yang merupakan algoritma untuk menemukan himpunan data yang paling sering muncul pada dataset. Berdasarkan pengujian yang dilakukan rerata nilai lift ratio algoritma Apriori sebesar 1,58 dan rerata nilai lift ratio algoritma FP-Growth sebesar 1,28.  Hal ini menunjukkan bahwa algoritma Apriori memiliki kinerja lebih tinggi jika dibandingkan dengan algoritma FP-Growth. 

Copyrights © 2025