Sinergi
Vol 29, No 3 (2025)

An intelligent approach for detection and classification of security attacks in a Passive Optical Network using Light Gradient Boosting Machine

Bibi, Sumayya (Unknown)
Zulkifli, Nadiatulhuda (Unknown)
Iqbal, Farabi (Unknown)
Iqbal, Sajid (Unknown)
Ramli, Arnidza (Unknown)
Yoon Khang, Adam Wong (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

Over the past decade, Passive Optical Networks (PONs) have emerged as a leading solution for next-generation broadband access, providing high-speed and cost-effective communication. However, PONs face significant security challenges, including data interception, denial-of-service (DoS) attacks, and resource exhaustion caused by malicious Optical Network Units (ONUs). Machine learning (ML), particularly advanced models like Light Gradient Boosting Machine (LightGBM), has proven to be a promising solution for managing complex security issues in PONs. Leveraging its ability to handle imbalanced, high-dimensional datasets, LightGBM was employed in this study to detect and classify malicious ONUs based on bandwidth usage patterns. The model achieved an impressive accuracy of 95.27%, a Matthews Correlation Coefficient (MCC) of 90%, and a precision rate of 93%. While traditional classifiers, such as Naïve Bayes (NB), achieved an accuracy of 88.53%, LightGBM demonstrated superior robustness in addressing class imbalance and enhancing detection accuracy. This work highlights the potential of LightGBM in enhancing PON security and enabling intelligent, resilient broadband networks.

Copyrights © 2025






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...