Penyakit pada daun tomat merupakan salah satu masalah utama dalam pertanian yang dapat menyebabkan penurunan hasil panen dan kualitas tanaman. Deteksi dini dan akurat terhadap penyakit ini sangat penting untuk menghindari kerugian yang lebih besar. Dalam penelitian ini, kami mengembangkan sistem klasifikasi penyakit daun tomat menggunakan teknik deep learning dengan arsitektur Convolutional Neural Network (CNN). Dataset yang digunakan terdiri dari gambar daun tomat dalam beberapa kategori penyakit, yang kemudian diproses menggunakan data augmentation untuk meningkatkan jumlah dan variasi data pelatihan. Model CNN yang dibangun terdiri dari beberapa lapis konvolusi dan max-pooling, diikuti oleh lapis dens (dense layer) untuk mengklasifikasikan gambar ke dalam 10 kategori penyakit. Hasil penelitian menunjukkan bahwa model yang dikembangkan mencapai akurasi sekitar 95.84% pada dataset validasi, dengan kemampuan yang baik dalam membedakan berbagai jenis penyakit. Analisis matriks kekacauan (confusion matrix) menunjukkan bahwa model memiliki performa yang konsisten dalam mengklasifikasikan penyakit, meskipun ada beberapa kesalahan klasifikasi pada kategori tertentu. Sistem ini dapat menjadi alat bantu yang efektif bagi petani dan peneliti untuk mendeteksi penyakit daun tomat secara akurat dan efisien.
Copyrights © 2025