The growth of customer data in the transportation industry drives the need for analytical systems capable of segmenting customers objectively and strategically. This study aims to apply the K-Means Clustering method based on the Recency, Frequency, and Monetary (RFM) model for customer segmentation and utilize the Holt-Winters Exponential Smoothing Additive method to forecast passenger numbers. The dataset comprises 10,440 customer transactions from PT XYZ during the 2022–2024 period. RFM values were calculated, normalized, and processed using the K-Means algorithm to produce three customer clusters: Loyal, Regular, and Passive. Subsequently, the Holt-Winters method was employed to forecast passenger numbers, achieving the smallest Mean Absolute Percentage Error (MAPE) of 6.88%, indicating a high level of accuracy. The results were visualized through an interactive dashboard using Tableau, enabling management to make data-driven decisions. This research demonstrates that integrating segmentation and forecasting methods into a Business Intelligence system can enhance the effectiveness of marketing strategies and the operational efficiency of the company.
                        
                        
                        
                        
                            
                                Copyrights © 2025