Jurnal Pilar Nusa Mandiri
Vol. 21 No. 2 (2025): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Pe

COMPARISON OF ARIMA, LSTM, AND GRU MODELS FOR FORECASTING SALES OF HIT AEROSOL PRODUCTS

Sunendar, Nendi (Unknown)
Rianto, Yan (Unknown)



Article Info

Publish Date
23 Sep 2025

Abstract

A more accurate forecasting model, such as LSTM, can significantly enhance business efficiency by providing more reliable predictions of future sales, allowing for better inventory management, optimized production schedules, and more precise distribution planning. This leads to reduced costs, minimized stockouts, and improved customer satisfaction. This study evaluates the forecasting performance of ARIMA, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models using sales data from 2021 to 2023. The models are assessed based on Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Results show that LSTM outperforms the other models with a MAPE of 10.76%, followed by ARIMA at 11.23% and GRU at 11.47%. These findings highlight the advantages of deep learning methods, particularly LSTM, in capturing complex patterns and trends in time series data. The study demonstrates the potential of these models to optimize sales forecasting, aiding decision-making processes in production and distribution planning.

Copyrights © 2025






Journal Info

Abbrev

pilar

Publisher

Subject

Computer Science & IT

Description

Jurnal Pilar merupakan jurnal ilmiah yang diterbitkan oleh program studi sistem informasi STMIK Nusa Mandiri. Jurnal ini berisi tentang karya ilmiah yang bertemakan: Rekayasa Perangkat Lunak, Sistem Pakar, Sistem Penunjang, Keputusan, Perancangan Sistem Informasi, Data Mining, Pengolahan ...