A more accurate forecasting model, such as LSTM, can significantly enhance business efficiency by providing more reliable predictions of future sales, allowing for better inventory management, optimized production schedules, and more precise distribution planning. This leads to reduced costs, minimized stockouts, and improved customer satisfaction. This study evaluates the forecasting performance of ARIMA, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models using sales data from 2021 to 2023. The models are assessed based on Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Results show that LSTM outperforms the other models with a MAPE of 10.76%, followed by ARIMA at 11.23% and GRU at 11.47%. These findings highlight the advantages of deep learning methods, particularly LSTM, in capturing complex patterns and trends in time series data. The study demonstrates the potential of these models to optimize sales forecasting, aiding decision-making processes in production and distribution planning.
Copyrights © 2025