International Journal of Advances in Applied Sciences
Vol 14, No 3: September 2025

Deep learning for image classification of submersible pump impeller

Phuc, Phan Nguyen Ky (Unknown)
Chanh, Doan Huu (Unknown)
Luu, Trong Hieu (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

This study presented a deep learning-based model in the submersible pump impellers quality inspection process. The proposed method aimed to relieve worker workload, automate the system, as well as increase the accuracy in defect detection and classification. The proposed approach aims to be implemented on systems with low investment cost and limited resources, i.e., small single-board computers, enabling flexible deployment in industrial environments. The model consisted of three convolutional neural network (CNN) models, i.e., visual geometry group 16 (VGG16), ResNet50, and a custom model. The outputs of three networks were either synthesized later through an ensemble stage or used separately. A graphical user interface (GUI) was also developed for real-time inspection and user-friendly interaction. The approach achieved up to 99.8% accuracy in identifying defects, including surface scratches, corrosion, and geometric irregularities. The proposed method improved the quality assurance process by reducing manual inspection efforts. Future research could explore advanced techniques like anomaly detection to further enhance system performance and versatility.

Copyrights © 2025






Journal Info

Abbrev

IJAAS

Publisher

Subject

Earth & Planetary Sciences Environmental Science Materials Science & Nanotechnology Mathematics Physics

Description

International Journal of Advances in Applied Sciences (IJAAS) is a peer-reviewed and open access journal dedicated to publish significant research findings in the field of applied and theoretical sciences. The journal is designed to serve researchers, developers, professionals, graduate students and ...