One of the main engineering challenges has been to design an economical soil retaining structure with high seismic resistance. From this perspective, reinforced soil walls have been developed with a focus on flexibility, in order to efficiently resist the effects of similar historical events in the event of a significant earthquake. The overall objective of this study was to compare the structural behavior of a geogrid-reinforced soil wall (Terramesh® system) under static and pseudo-static loads, and in a seismic environment simulated using the finite element method, in a shopping center in Trujillo, Peru. A case study was conducted using a mixed methodology, both applied and analytical-comparative in scope. Furthermore, the finite element methodology, material constitutive modeling, and dynamic time-history analysis of modal structures were chosen. It was determined that seismic loading can produce a 53.33% increase in deformations compared to the static state; Likewise, the overall safety factor under dynamic conditions tends to decrease by 27.85% compared to the static case. This study demonstrated the scope of geogrid reinforcement (Terramesh® system) through a practical case of a reinforced soil wall, using Plaxis 2D software to compare, estimate, and compare structural behavior in static, dynamic, and simulated environments.
Copyrights © 2025