PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol. 13 No. 2 (2025): September 2025

Breast Cancer Classification in Ultrasound Images Using Convolutional Neural Network (CNN) with Watershed Transform Method

Fadillah , Muhammad Iqbal (Unknown)
Syafii , Ahmad Faishal (Unknown)
Abdullah , Indra Nugraha (Unknown)



Article Info

Publish Date
30 Sep 2025

Abstract

Breast cancer is one of the deadliest diseases, especially for women. Early diagnosis of breast lesions and differentiation of malignant nodules from benign nodules and normal nodules are important for breast cancer prognosis. In diagnosing this disease, one radiological method, namely medical image analysis using ultrasonography, can be used to determine early diagnosis of breast cancer. Breast cancer ultrasound images have several characteristics, such as color, shape, size, and texture, which make segmentation difficult due to object accumulation. This study implements a Convolutional Neural Network classification algorithm and modified watershed segmentation to separate nodules or tumors in breast cancer. From the segmentation performance test with Watershed Transform, the average ZSI index was 40% for malignant images and 60% for benign images. The results of the VGG architecture for classification modeling showed 47% for watershed segmentation and 80% without watershed segmentation.

Copyrights © 2025






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...