Indonesian Journal of Electrical Engineering and Computer Science
Vol 39, No 3: September 2025

A comparative study of CNN architectures for the detection of tomato leaf diseases

Benkrama, Soumia (Unknown)
Ahmed, Benyamina (Unknown)
Hemdani, Nour El Houda (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

Recent advancements in computer vision and machine learning (ML) have revolutionised various sectors, including precision agriculture (PA). In our study, we focused on detecting tomato leaf diseases (TLD) using deep learning (DL) techniques. Using a convolutional neural network (CNN) model, we developed an agricultural image index to accurately detect TLD. By utilizing available datasets from Kaggle, we trained our model to recognize various TLDs. To determine the most effective one, we compared multiple architectures, including VGG, ResNet, and EfficientNetB1. The obtained results demonstrated a classification accuracy of over 99% on the test set. This approach has allowed us to accelerate and enhance the disease detection process, positively impacting agricultural communities by reducing crop losses and enabling early intervention in case of disease outbreaks. Our study highlights the effectiveness of CNN models in the detection of TLD, paving the way for future applications in PA.

Copyrights © 2025