Indonesian Journal of Electrical Engineering and Computer Science
Vol 39, No 3: September 2025

Mechanized network based cyber-attack detection and classification using DNN-generative adversarial model

Mahesh, Katikam (Unknown)
Rao, Kunjam Nageswara (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

These days almost everything is internet. Cyberattacks are the world's most pressing issues. Due to these attacks, Computer systems can be rendered inoperable, disrupted, destroyed or controlled via cyberattacks. Additionally, they can be used to steal, modify, erase, block, or alter data. Most organizations are facing this Issue and lose financially as well as in data security, there are numerous conventional intrusion detection systems (IDS) and firewalls are illustrations for network security tools which are not able to classify and detect different types of attacks in network. With machine learning approach using the Dataset KDD_CUP 99 as input, the synthetic minority oversampling technique (SMOTE) is one of the most often used oversampling methods for addressing imbalance issues. The proposed hybrid deep neural network (DNN), generative adversarial network (GAN), and exhaustive feature selection (EFS) can detect and classify several attack types including R2L, U2R, Probe, denial of service (DoS), and normal attacks types and inform to administrator to ring alarm sound to control and monitor network traffic in dynamically typed networks.

Copyrights © 2025