Jurnal Sarjana Teknik Informatika
Vol. 13 No. 1 (2025): Februari

Predictive Modelling for Mental Health Disorders using Machine Learning Techniques

Eguavoen, Victor Osasu (Unknown)
Nwelih, Emmanuel (Unknown)



Article Info

Publish Date
25 Feb 2025

Abstract

This study evaluates the application of machine learning techniques in improving the prediction and diagnosis of mental health disorders. Traditional diagnostic methods are subjective and time-consuming, necessitating more accurate and efficient alternatives. Using a dataset from the Open-Sourcing Mental Illness survey, this study compares five machine learning algorithms-logistic regression, decision trees, random forests, k-nearest neighbours, and naïve bayes-on mental health prediction tasks. The findings indicate that Naïve Bayes achieves the highest accuracy (82.54%), suggesting its potential for more accurate mental health diagnostics. These results underscore the value of machine learning techniques in enhancing early detection and management of mental health conditions, paving the way for future research into more diverse datasets and ensemble approaches to refine predictive models for clinical application.

Copyrights © 2025






Journal Info

Abbrev

JSTIF

Publisher

Subject

Computer Science & IT

Description

JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal) adalah jurnal online ditujukan sebagai sarana publikasi dari makalah yang disarikan dari hasil penelitian mahasiswa Teknik Informatika. Focus and Scope: Rekayasa Perangkat Lunak (Software Engineering) Pengetahuan dan Data Mining (Data Mining) ...