Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 7 No 4 (2025): October

COV-TViT: An Improved Diagnostic System for COVID Pneumonitis Utilizing Transfer Learning and Vision Transformer on X-Ray Images

Kumar, Sunil (Unknown)
Yadav, Amar Pal (Unknown)
Nandal, Neha (Unknown)
Awasthi, Vishal (Unknown)
Sapra, Luxmi (Unknown)
Chhabra, Prachi (Unknown)



Article Info

Publish Date
06 Oct 2025

Abstract

COVID is a contagious lung ailment that continues to be a world curse, and it remains a highly infectious respiratory disease with global health implications. Traditional diagnostic methods, such as RT-PCR, though widely used, are often constrained by high costs, limited accessibility, and delayed results. In contrast, radiology for lung disease detection has been proven advantageous for identifying deformities, and chest X-rays are the most preferred radiological method due to their non-invasive nature. To address these limitations, this study aims to develop an efficient, automated diagnostic system leveraging radiological imaging, specifically X-rays, which are cost-effective and widely available. The primary contribution of this research is the introduction of COV-TViT, a novel deep learning framework that integrates transfer learning with Vision Transformer (ViT) architecture for the accurate detection of COVID pneumonitis. The proposed method is evaluated using the COVID-QU-Ex dataset, which comprises a balanced set of X-ray images from COVID positive and healthy individuals. Methodologically, the system employs pre-trained convolutional neural networks (CNNs), specifically VGG16 and VGG19 (Visual Geometry Group), for transfer learning, followed by fine tuning to enhance feature extraction. The ViT model, known for its self-attention mechanism, is then applied to capture complex spatial dependencies in the X-ray images, enabling robust classification. Experimental results demonstrate that COV-TViT achieves a classification accuracy of 98.96% and an F1 score of 96.21%, outperforming traditional CNN based transfer learning models in several scenarios. These findings underscore the model’s potential for high-precision COVID pneumonitis detection. The proposed approach significantly transforms classification tasks using self-attention mechanisms to extract features and learn representations. Overall, the proposed diagnostic system COV-TViT can be advantageous in the fundamental identification of COVID pneumonitis.

Copyrights © 2025






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...