JISKa (Jurnal Informatika Sunan Kalijaga)
Vol. 10 No. 3 (2025): September 2025

Analisis Sistem Deteksi Citra untuk Optimalisasi Pengawasan Lalu Lintas Udara Menggunakan Algoritma YOLOv5

Ayuningtyas, Astika (Unknown)
Riadi, Imam (Unknown)
Yudhana, Anton (Unknown)



Article Info

Publish Date
30 Sep 2025

Abstract

This study aims to develop an image detection system capable of identifying manned and unmanned aircraft objects to support air traffic surveillance. The increasing flight activity, both from commercial aircraft and drones, requires a more optimal surveillance system to connect the airspace efficiently. In this study, a Convolutional Neural Network (CNN) model utilizing the You Only Look Once version 5 (YOLOv5) method is employed to detect and classify objects in real-time from aircraft images. The methodology employed includes collecting aerial image data, labeling the data, and training object detection models using YOLOv5. The dataset used consists of 2,520 images of manned aircraft (warplanes) and 5,422 images of unmanned aircraft (drones). The experimental results demonstrate that the YOLOv5 model achieves high detection accuracy for both manned and unmanned aircraft, with a relatively fast inference time, thereby supporting the development of an effective air traffic surveillance system. This system is expected to be an integral part of a more sophisticated and responsive air traffic surveillance solution.

Copyrights © 2025






Journal Info

Abbrev

JISKA

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Library & Information Science

Description

JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, ...