Building of Informatics, Technology and Science
Vol 7 No 2 (2025): September 2025

Sentiment Analysis of SiKasep Application Reviews on the Play Store Using the Naïve Bayes Approach

Afrahtama, Ariiq (Unknown)
Gunawan, Putu Harry (Unknown)



Article Info

Publish Date
02 Sep 2025

Abstract

The Ministry of Public Works and Public Housing (PUPR) launched the SiKasep application (Subsidized Housing Mortgage Information System) to streamline subsidized housing loan applications. This research analyzes user sentiment toward SiKasep using 3,416 Google Play Store reviews through Naïve Bayes classification to provide actionable insights for government digital service improvement. The methodology encompasses data scraping, comprehensive preprocessing addressing Indonesian language challenges (slang normalization and morphological complexity), TF-IDF feature extraction, and Complement Naïve Bayes classification with hyperparameter optimization. The preprocessing pipeline reduced vocabulary sparsity by 47%, while RandomOverSampler addressed significant class imbalance. The Complement Naïve Bayes classifier achieved 75.98% accuracy with balanced performance across sentiment classes (precision: 79%, recall: 76%, F1-score: 76%). Analysis revealed predominantly negative sentiment (52.4%), primarily related to registration and authentication difficulties, including document verification, login functionality, and KTP integration issues. Positive sentiment highlighted user appreciation for core housing services when technical barriers were absent. The findings emphasize the importance of streamlined registration processes and robust technical infrastructure for government digital services. This research contributes to understanding Indonesian e-government user experiences and provides a replicable sentiment analysis framework supporting evidence-based policy development for enhanced digital service delivery.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...