Building of Informatics, Technology and Science
Vol 7 No 2 (2025): September 2025

Pengelompokkan Pola Perubahan Cuaca Menggunakan Metode K-Medoids dan Gap Statistic

Julianthy, Denissya (Unknown)
Hadiana, Asep Id (Unknown)
Ramadhan, Edvin (Unknown)



Article Info

Publish Date
02 Sep 2025

Abstract

Clustering daily weather patterns is an important process for understanding complex weather variations. However, commonly used methods such as K-Means have weaknesses due to their sensitivity to outliers and the need for manual clustering. This study proposes a combination of the K-Medoids and Gap Statistics methods to produce more stable and accurate clusters. Semarang's daily weather data from 2017 to 2023 was processed through cleaning, standardization with Standard Scaler, and dimensionality reduction using PCA. The Gap Statistics results indicate the optimal number of clusters is three: rainy, sunny, and cloudy. The clustering evaluation yielded a Silhouette Score of 0.3793, a Calinski-Harabasz Index of 1490.5604, and a Davies-Bouldin Index of 0.9031. These results indicate a fairly good cluster structure, although there is still room for improvement, especially in the separation between clusters.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...