Building of Informatics, Technology and Science
Vol 7 No 2 (2025): September 2025

Fake News Detection with Hybrid CNN-SVM on Data AI and Technology

Lesmana, Aditya (Unknown)
Sibaroni, Yuliant (Unknown)
Prasetyowati, Sri Suryani (Unknown)



Article Info

Publish Date
04 Sep 2025

Abstract

The spread of fake news or hoaxes in this digital era, especially related to the issue of intelligence (AI) and Technology, is increasingly unsettling because it can trigger public misunderstanding and reduce trust in technological developments. News such as the claim that AI will lead to mass unemployment is a clear example of the spread of misleading information. Therefore, a system that can accurately detect fake news is needed. The purpose of this research is to develop a fake news detection system that is able to accurately identify hoaxes on topics related to AI and Technology. This study proposes a hybrid deep learning method that combines Convolutional Neural Network (CNN) and Support Vector Machine to improve the accuracy of hoax news detection. CNN is used to extract complex news text features, whereas SVM is used as a classifier because of its advantage of being able to separate classes within optimal margins. The selection of this method is based on the results of previous research which shows that each method has good performance, but has certain limitations. By combining the two, it is hoped that more optimal results can be obtained in detecting fake news, especially the topic of AI and Technology. The evaluation was carried out using news datasets related to AI and Technology that have gone through a process of preprocessing, feature extraction with TF – IDF, and feature expansion using Glove Embedding. The results obtained showed that the CNN-SVM hybrid model provided increased accuracy compared to using a single method.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...