Penelitian ini bertujuan untuk membandingkan performa algoritma Fuzzy C-Means (FCM) dan K-Means dalam klasterisasi data produksi bawang merah di Indonesia. Pendekatan yang digunakan adalah machine learning berbasis unsupervised clustering, dengan evaluasi kinerja berdasarkan tiga metrik utama: Silhouette Score, Davies-Bouldin Index, dan waktu komputasi. Data produksi dianalisis secara spasial menggunakan koordinat geografis kabupaten/kota dan divisualisasikan dalam bentuk peta klaster dan grafik performa. Hasil eksperimen menunjukkan bahwa FCM memberikan hasil klasterisasi yang lebih akurat dan stabil, terutama pada wilayah dengan karakteristik produksi yang tumpang tindih, sedangkan K-Means lebih unggul dari segi efisiensi waktu komputasi. Visualisasi spasial mengungkapkan pola distribusi produksi yang timpang, dengan Pulau Jawa mendominasi klaster produksi tinggi. Temuan ini menunjukkan bahwa metode klasterisasi cerdas dapat menjadi solusi potensial dalam pengembangan sistem informasi geografis pertanian yang adaptif dan berbasis data.
Copyrights © 2025