This study presents the design and implementation of a smart irrigation system using Mamdani fuzzy logic integrated with IoT-based environmental sensors. The system utilizes an ESP32 microcontroller, DHT22 temperature sensor, capacitive soil moisture sensor, and a solenoid valve to perform adaptive irrigation based on real-time environmental conditions. The fuzzy logic engine processes sensor inputs and determines the irrigation intensity through centroid-based defuzzification. A web-based dashboard was developed using PHP and JavaScript to monitor temperature, soil moisture, and irrigation status in real time. The system was tested on mustard greens (Brassica juncea L.) for 12 hours, resulting in a 35% water usage reduction compared to manual watering methods while maintaining optimal soil moisture. This approach demonstrates a promising solution for sustainable and efficient smart agriculture.
                        
                        
                        
                        
                            
                                Copyrights © 2025