eProceedings of Engineering
Vol. 12 No. 4 (2025): Agustus 2025

Pengujian Alpha, Beta dan UAT pada Algortima Deep Learning YOLOV4-Tiny untuk Pendeteksian Objek pada Tongkat Pintar

Saputra , Ariq Nurcahyo (Unknown)
Kallista, Meta (Unknown)
Wibawa, Prasetya Dwi (Unknown)



Article Info

Publish Date
18 Sep 2025

Abstract

Tongkat konvensional yang dimanfaatkan oleh individu penyandang tunanetra masih memiliki banyak kelemahan, kelemahan tersebut terutama dalam mendeteksi rintangan yang tidak terlihat di permukaan tanah. Penelitian ini mengembangkan dan membuat sebuah sistem tongkat cerdas yang berbasis Internet of Things (IoT) untuk memperbaiki keamanan serta mobilitas para pengguna tongkat penyandang tunanetra. Sistem ini mengintegrasikan Sensor ultrasonik, Sensor inframerah, modul GPS, dan algoritma Deep Learning YOLOv4-Tiny yang dioperasikan menggunakan Raspberry Pi 4 model B. Tongkat ini mampu mendeteksi rintangan dari sisi depan, kanan, dan kiri, memberikan reaksi melalui output berupa suara audio dengan menyebutkan nama benda yang berada di sisi depan, serta memungkinkan keluarga pengguna atau kerabat untuk melacak posisi secara langsung. Dengan mengintegrasikan teknologi AI, IoT, dan desain ergonomis, tongkat cerdas ini diharapkan dapat meningkatkan kemandirian dan rasa percaya diri bagi penyandang tunanetra dalam menjalani aktivitas sehari-hari. Kata kunci— IoT, GPS, Tunanetra, YOLOV4-Tiny.

Copyrights © 2025






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...