eProceedings of Engineering
Vol. 12 No. 4 (2025): Agustus 2025

Sistem Deteksi Katarak Menggunakan Deep Learning

Hilmi, Arga Fajar (Unknown)
Azakiy, Muhammad Nabil Rafa (Unknown)
Tsaniya, Niswah Banun (Unknown)



Article Info

Publish Date
18 Sep 2025

Abstract

Katarak merupakan penyebab utama kebutaan di dunia, mencakup 33% gangguan penglihatan dan 51% kebutaan. Di Indonesia, distribusi dokter mata yang terkonsentrasi 70% di kota besar menyebabkan keterbatasan akses layanan mata di daerah terpencil. Penelitian ini mengembangkan sistem deteksi katarak otomatis berbasis deep learning menggunakan aplikasi Android yang terintegrasi cloud computing. Sistem ini menggunakan arsitektur CNN 5-layer dengan 5-Fold Cross Validation untuk mengklasifikasikan citra fundus mata ke dalam tiga kategori: Normal, Immature, dan Mature. Model diimplementasikan dengan Flask API, Express.js, dan PostgreSQL, serta aplikasi dikembangkan menggunakan Android Studio. Fitur utama aplikasi mencakup upload gambar, klasifikasi otomatis, dan penyimpanan riwayat hasil. Hasil pengujian menunjukkan akurasi model sebesar 99,83% dengan waktu pemrosesan rata-rata 1,51–2,86 detik. Sistem ini kompatibel pada Android versi 8–15 dan mampu menjadi solusi praktis dan akurat untuk deteksi katarak di daerah minim tenaga medis. Kata kunci: Deep Learning, Deteksi Katarak, CNN, Mobile Application, Cloud Computing.

Copyrights © 2025






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...